Module Description/Course Syllabi

Study Programme : Magister of Soil Science Faculty of Agriculture

1.Course number and name

MIT 82221 Land Suitability Evaluation

2.Credits and contact hours/Number of ECTS credits allocated

Universitas Andalas

3sks (3-0)

3.Instructors and course coordinator

1. Prof. Dr. Ir. Dian Fiantis, MSc; 2. Prof. Dr. Ir. Azwar Rasyidin, M Agr Sc; 3. Dr. Juniarti, SP, MP

4. Text book, title, outhor, and year

- Sys, C., E. Van Ranst, J. Dibaveye. 1991. Land Evaluation Part I, II and III. Agricultural Publications No. 7. General Administration for Development Cooperation. Brussels
- Belgium. 733 p.
- 2. Van Ranst, E., A. Verdoot. 2005. Land Evaluation, Part I, II and III. International Centre forPhysical Land Resources Universiteit Gent, Gent Belgium. 550 p.
- 3. Deckers, J., O. Spaargaren, S. Dondeyne. Soil Survey as a Basis for Land Evaluation. Encylopedia of Life Support System (EOLSS). UNESCO. 22 p.
- 4. Olson, W. 1981. Soils and the Environment: A Guide to Soil Surveys and their Applications. Springer. London. Great Britain. 188 p.
- 5. Constantini, E. A. C. 2009. Manual of Methods for Soil and Land Evaluation. Science Publishers. 570 p.

5. Specific course information

A. Brief description of the content of the course (catalog description)

This course discusses the importance of land survey and mapping in relation to land useplanning; explanation of soil characteristics and the differences due to the influence of soilformation factors; methods of land survey; interpretation of survey data for land

suitability, capability, and for irrigation, as well as for non- agricultural use; use of computer in creatingland survey and suitability as well as agricultural production potential modelling.

B. Course Content

Week Course Content

- 1 Definition and role of Evaluation of Land Suitability Influencing factors, Evaluation of Land Suitability, History of Evaluation of Land Suitability
- 2 Land use planning: project identification, phases and stages of land use planning,
- 3 Land resources, climate, vegetation, hydrology and water, landform, soil 4 Evaluation of climate suitability according to Papadakis, USDA, parametric system
 - 5 Evaluation of land characteristics and land quality: limited approach and parametric approach
- 6 Plant production, minimum climate data, photosynthesis and plant adaptation, plant growth models (FAO and Wageningen)
- 7 Rainfall (predicted rain, effective rain), evapotranspiration, maximum plant evapotranspiration, actual evapotranspiration, water use efficiency
- 8 Determination of planting start and period, crop coefficient, harvest response factor, crop water requirement for maximum yield
 - 9 The potential for crop production based on solar radiation, waterstressconditions, land productivity potential
- 10 Land evaluation method based on specific plant needs, FAO land suitability classification
- 11 Land evaluation method for irrigated land.
- 12 Classification of land capability for the tropics, approaches, land properties and characteristics, land capability index, parametric approach
- 13 Plant growth agroecological zone
- 14 Land evaluation application based on visual basic, web and android

C. Semester when the course unit is delivered

Even Semester

D. Mode of delivery (face-to-face, distance learning)

Face to face

6.Intended Learning Outcomes (CPL)

- ILO 2: An ability to classify soil, to evaluate land capability and suitability, as well as todetermine the alternative utilization for sustainable agriculture and environment PI 2: An ability to evaluate soil capability
- PI 3: An ability to determine suitable land use management
- ILO 3: An ability to use technology in identifying and solving problems of soil, landresource, environment problems independently, eligibly, and accurately PI 2: An ability to work indepently in determining soil properties
- 7. Course Learning Outcomes (CPMK) ex. The student will be able to explain the significance of current research about a particular topic.
- A. Students will be able to use soil data to evaluate soil capability and land suitability
- B. Students will be able to determine suitable land management to reach sustainable agriculture and environment
- C. Students will be able to analyze soil independently either at laboratory or at field site

8.Learning and teaching methods

Cooperative and Case Base Method

9. Language of instruction

Indonesia and English (English Class)

10. Assessment methods and criteria

Summative Assessment:

1. Tasks : 5% 2. Ouiz : 5 %

3. Mid Semester : 25%4. Final Semester : 25%5. Practikum :30%

6. Attendance : 5% Formative Assessment:

1. Thumb up and thumb down

2. Minutes paper